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Abstract. In the present paper we construct the optimal quadrature formulas
with derivatives in the Sobolev space. We give a new method of construction of
such quadrature formulas using the discrete analogue of the differential operator
d2/dx2. Finally we get the explicit forms of the optimal coefficients.
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1 Introduction. Statement of the problem
The results of many experiments in science and technology are usually given
in the form of tabular data. These data are considered as values of some
function and its derivatives. It is required to calculate with possible high
exactness the values of a definite integral using this data. In this connection
we consider the following quadrature formula

1∫
0

ϕ(x) dx ∼=
n∑
α=0

N∑
β=0

Cα[β]ϕ(α)(xβ) (1.1)

with the error functional

`(x) = ε[0,1](x)−
n∑
α=0

N∑
β=0

(−1)αCα[β]δ(α)(x− xβ), (1.2)

where 0 < t < 1, Cα[β] are the coefficients, xβ (∈ [0, 1]) are the nodes, N
is a natural number, n = 0, 3, ε[0,1](x) is the characteristic function of the
interval [0, 1], δ is the Dirac delta-function, ϕ is an element of the space
L
(m)
2 (0, 1). Here L(m)

2 (0, 1) is the Sobolev space of functions with a square
integrable mth generalized derivative and equipped with the norm

‖ϕ|L(m)
2 (0, 1)‖ =


1∫

0

(ϕ(m)(x))2 dx


1/2

.
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Since the functional ` of the form (1.2) is defined on the space L(m)
2 (0, 1)

it is necessary to impose the following conditions (see [1, 2])

(`, xα) = 0, α = 0, 1, 2, ...,m− 1. (1.3)

Hence it is clear that for existence of the quadrature formulas of the
form (1.1) the condition N ≥ m− 1 has to be met.

The difference

(`, ϕ) =

∞∫
−∞

`(x)ϕ(x) dx =

1∫
0

ϕ(x) dx−
n∑
α=0

N∑
β=0

Cα[β]ϕ(α)(xβ) (1.4)

is called the error of the formula (1.1).
By the Cauchy-Schwarz inequality

|(`, ϕ)| ≤
∥∥∥ϕ|L(m)

2

∥∥∥ · ∥∥∥`|L(m)∗
2

∥∥∥
estimation of the error (1.4) on functions of the space L(m)

2 (0, 1) is reduced to
finding the norm of the error functional ` in the conjugate space L(m)∗

2 (0, 1).
It is well known [1, 2] that for any functional ` in L(m)∗

2 the equality

‖`|L(m)∗
2 ‖2 = (`, ψ`) = (`(x), (−1)m(` ∗Gm)(x))

=

∫ ∞
−∞

`(x)

(
(−1)m

∫ ∞
−∞

`(y)Gm(x− y) dy

)
dx

holds. Here
ψ`(x) = (−1)m(` ∗Gm)(x) + Pm−1(x), (1.5)

where

Gm(x) =
|x|2m−1

2 · (2m− 1)!
, (1.6)

Pm−1(x) is a polynomial of degree m − 1, and ∗ is the operation of
convolution, i.e.

(f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y) dy =

∫ ∞
−∞

f(y)g(x− y) dy.
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Applying this equality to the error functional (1.2) and taking into
account (1.5) we obtain the following

‖`‖2 =

= (−1)m
[ n∑
k=0

n∑
α=0

N∑
γ=0

N∑
β=0

(−1)kCk[γ]Cα[β]
(hβ − hγ)2m−1−α−ksgn(hβ − hγ)

2(2m− 1− α− k)!

−2

n∑
α=0

N∑
β=0

(−1)αCα[β]

1∫
0

(x− hβ)2m−1−αsgn(x− hβ)

2(2m− 1− α)!
dx (1.7)

+

1∫
0

1∫
0

(x− y)2m−1sgn(x− y)

2(2m− 1)!
dx dy

]
.

Now we consider the minimization problem of the norm (1.7) of the error
functional ` under the conditions (1.3).

It should be noted that minimization of ‖`‖2 by Cα[β], α = 0, n, β = 0, N
is very hard. Here we suggest successive minimization of ‖`‖2 by Cα[β], i.e.
first we consider the casem = 1 and the expression (1.7) of ‖`‖2 we minimize
by C0[β]. Further we consider the case m = 2, and using the obtained values
for C0[β], the expression (1.7) of ‖`‖2 we minimize by C1[β]. After that in
the case m = 3, using the obtained values of C0[β] and C1[β], the expression
(1.7) for ‖`‖2 we minimize by C2[β] and so on.

2 Minimization of the norm of the error
functional

Next we realize this successive minimization for the cases m = 1, 2, 3 and
m = 4. Here we use the Lagrang method. We consider the function

Φ(C, λm−1) = ‖`‖2 − 2(−1)mλm−1(`, xm−1),

where ‖`‖2 is defined by (1.7) and

C = (C0[0], C0[1], ..., C0[N ], C1[0], C1[1], ..., C1[N ],

..., Cm−1[0], Cm−1[1], ..., Cm−1[N ]).
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We consider the case m = 1 then the quadrature formula (1.1) has the
form

1∫
0

ϕ(x) dx ∼=
N∑
β=0

C0[β]ϕ(hβ) (2.1)

and ‖`‖2 depends only on C0[β] (β = 0, N).
Equating to zero partial derivatives of Φ(C, λ0) by C0[β] and λ0 we get

the following system of linear equations

N∑
γ=0

C0[γ]
(hβ − hγ) sgn(hβ − hγ)

2
+ λ0 = F0(hβ), (2.2)

β = 0, 1, ..., N,
N∑
γ=0

C0[γ] = g0, (2.3)

where

F0(hβ) =

1∫
0

(x− hβ) sgn(x− hβ)

2
dx =

1

2

[
(hβ)2 − hβ +

1

2

]
,

g0 =

1∫
0

dx = 1.

Further we consider the case m = 2. In this case the quadrature formula
(1.1) takes the form

1∫
0

ϕ(x) dx ∼=
N∑
β=0

(
C0[β]ϕ(hβ) + C1[β]ϕ′(hβ)

)
(2.4)

and expression (1.7) of ‖`‖2 depends on C0[β] and C1[β]. Then using the
solution C0[β] and λ0 of the system (2.2)-(2.3), equating to zero parial
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derivatives of the function Φ(C, λ1) by C1[β] and λ1 we get

N∑
γ=0

C1[γ]
(hβ − hγ) sgn(hβ − hγ)

2
− λ1 = F1(hβ), (2.5)

β = 0, 1, ..., N,
N∑
γ=0

C1[γ] = g1 −
N∑
γ=0

C0[γ](hγ), (2.6)

where

F1(hβ) = −f1(hβ) +

N∑
γ=0

C0[γ]
(hβ − hγ)2 sgn(hβ − hγ)

4
, (2.7)

f1(hβ) = −
1∫

0

(x− hβ)2 sgn(x− hβ)

4
dx = − 1

12

[
(1− hβ)3 − (hβ)3

]
,

g1 =

1∫
0

xdx =
1

2
. (2.8)

In the case m = 3 the quadrature formula (1.1) has the form

1∫
0

ϕ(x) dx ∼=
N∑
β=0

(
C0[β]ϕ(hβ) + C1[β]ϕ′(hβ) + C2[β]ϕ′′(hβ)

)
(2.9)

and ‖`‖2, defined by equality (1.7), depends on C0[β], C1[β] and C2[β]. Then
using solutions C0[β] and λ0 of system (2.2)-(2.3) and C1[β], λ1 of system
(2.5)-(2.6), equating to zero partial derivatives of Φ(C, λ2) by C2[β] and λ2
we have the following system of linear equations

N∑
γ=0

C2[γ]
(hβ − hγ) sgn(hβ − hγ)

2
+ λ2 = F2(hβ), (2.10)

β = 0, 1, ..., N,
N∑
γ=0

C2[γ] =
g2
2!
−

1∑
i=0

N∑
γ=0

Ci[γ]
(hγ)2−i

(2− i)!
, (2.11)
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where

F2(hβ) = f2(hβ)−
1∑
l=0

N∑
γ=0

(−1)lCl[γ]
(hβ − hγ)3−l sgn(hβ − hγ)

2(3− l)!
,

f2(hβ) =

1∫
0

(x− hβ)3 sgn(x− hβ)

12
dx =

1

48

[
(hβ)4 + (1− hβ)4

]
,

g2 =

1∫
0

x2 dx =
1

3
.

In the case m = 4 the quadrature formula (1.1) has the form

1∫
0

ϕ(x) dx ∼=
N∑
β=0

(
C0[β]ϕ(hβ)+C1[β]ϕ′(hβ)+C2[β]ϕ′′(hβ)+C3[β]ϕ′′′(hβ)

)
(2.12)

and ‖`‖2, defined by equality (1.7), depends on C0[β], C1[β], C2[β] and
C3[β]. Then using solutions C0[β] and λ0 of system (2.2)-(2.3), C1[β] and
λ1 of system (2.5)-(2.6) and C2[β], λ2 of system (2.10)-(2.11), equating to
zero partial derivatives of Φ(C, λ3) by C3[β] and λ3 we have the following
system of linear equations

N∑
γ=0

C3[γ]
(hβ − hγ) sgn(hβ − hγ)

2
+ λ3 = F3(hβ), (2.13)

β = 0, 1, ..., N,
N∑
γ=0

C3[γ] =
g3
3!
−

2∑
i=0

N∑
γ=0

Ci[γ]
(hγ)3−i

(3− i)!
, (2.14)
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where

F3(hβ) = −f3(hβ) +

2∑
l=0

N∑
γ=0

(−1)lCl[γ]
(hβ − hγ)4−l sgn(hβ − hγ)

2(4− l)!
,

f3(hβ) = −
1∫

0

(x− hβ)4 sgn(x− hβ)

48
dx = − 1

240

[
(1− hβ)5 − (hβ)5

]
,

g3 =

1∫
0

x3 dx =
1

4
.

Suppose, continuing by this way, for the casesm = 1, 2, ..., k−1 we found
C0[β], C1[β], ..., Ck−2[β] and λ0, λ1, ..., λk−2. We consider the case m = k.
Then square of the norm (1.7) of the error functional ` of quadrature
formulas (1.1) depends on C0[β], C1[β], ..., Ck−2[β] and Ck−1[β]. Further
using the obtained solutions C0[β], C1[β], ..., Ck−2[β] and λ0, λ1, ..., λk−2 of
corresponding systems, equating to zero partial derivatives of the function
Φ(C, λk−1) by Ck−1[β] and λk−1 we arrive to the system of linear equations

N∑
γ=0

(−1)k−1Ck−1[γ] (hβ−hγ) sgn(hβ−hγ)
2 + (k − 1)!λk−1 = Fk−1(hβ),

β = 0, 1, ..., N,
N∑
γ=0

Ck−1[γ] = gk−1

(k−1)! −
k−2∑
i=0

N∑
γ=0

Ci[γ] (hγ)
k−1−i

(k−1−i)! ,

where

Fk−1(hβ) = fk−1(hβ)−
k−2∑
l=0

N∑
γ=0

(−1)lCl[γ]
(hβ − hγ)k−l sgn(hβ − hγ)

2(k − l)!
,

fk−1(hβ) =

1∫
0

(−1)k−1(x− hβ)k sgn(x− hβ)

2k!
dx,

gk−1 =

1∫
0

xk−1 dx.

Further, in the next section we solve systems (2.2)-(2.3), (2.5)-(2.6),
(2.10)-(2.11) and (2.13)-(2.14), i.e. we find optimal coefficients of quadrature
formulas of the forms (2.1), (2.4), (2.9) and (2.12).
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3 The main results
Here we use the concept of discrete argument functions and operations
on them. The theory of discrete argument functions is given in [1, 2]. For
completeness we give some definitions.

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h = 1
N ,

N = 1, 2, ..., functions ϕ and ψ are real-valued and defined on the real line
R.

Definition 3.1. The function ϕ(hβ) is a function of discrete argument if
it is given on some set of integer values of β.

Definition 3.2. The inner product of two discrete functions ϕ(hβ) and
ψ(hβ) is given by

[ϕ(hβ), ψ(hβ)] =

∞∑
β=−∞

ϕ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

Definition 3.3. The convolution of two functions ϕ(hβ) and ψ(hβ) is the
inner product

ϕ(hβ) ∗ ψ(hβ) = [ϕ(hγ), ψ(hβ − hγ)] =

∞∑
γ=−∞

ϕ(hγ) · ψ(hβ − hγ).

It should be noted that the discrete analog of the differential operator
d2m/dx2m was firstly introduced and investigated by S.L. Sobolev [1]. In
the work [3] the discrete analogue of the differential operator d2m/dx2m

was constructed. In particular, when m = 1 from the results of the work
[3] we get the discrete analogue D1(hβ) of the differential operator d2/ dx2

which has the form

D1(hβ) =

 0, |β| ≥ 2,
h−2, |β| = 1,
−2h−2, β = 0

(3.1)

and the following properties of the operator D1(hβ)

D1(hβ) ∗ 1 = 0, D1(hβ) ∗ (hβ) = 0, (3.2)

hD1(hβ) ∗ |hβ|
2

= δ(hβ). (3.3)
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where δ(hβ) is the discrete delta function.
In this section we solve systems (2.2)-(2.3), (2.5)-(2.6), (2.10)-(2.11) and

(2.13)-(2.14).
It should be noted that in the process of solution of these systems only

the discrete analogue D1(hβ) of the differential operator d2/dx2 is used
and each of these systems is reduced to the system of two linear equations
with two unknowns as shown below in the proof of Theorem 3.5.

The system (2.2)-(2.3) was solved in [?] and the following was proved

Theorem 3.4. In the space L(1)
2 (0, 1) when β = 0, 1, ..., N , the coefficients

of optimal quadrature formulas of the form (2.1) are defined as follows

C0[0] = h
2 ,

C0[β] = h
C0[N ] = h

2 .

Now, using Theorem 3.4, we solve system (2.5)-(2.6).
The following holds

Theorem 3.5. In the space L(2)
2 (0, 1) when β = 0, 1, ..., N , the coefficients

of optimal quadrature formulas of the form (2.4) have the form

C1[0] = h2

12 ,

C1[β] = 0

C1[N ] = −h
2

12 ,

where the optimal coefficients C0[β], β = 0, 1, ..., N are defined in Theorem
3.4.

Proof. Suppose C1[β] = 0 when β < 0 and β > N . Then, using
Definition 3.3, we can rewrite the system (2.5)-(2.6) in the following
convolution form

C1[β] ∗ |hβ|
2
− λ1 = F1(hβ), β = 0, 1, ..., N, (3.4)

N∑
γ=0

C1[γ] = g1 −
N∑
γ=0

C0[γ](hγ), (3.5)

Denoting by

u1(hβ) = C1[β] ∗ |hβ|
2
− λ1, (3.6)
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using (3.1), (3.2) and (3.3), we obtain

C1[β] = hD1(hβ) ∗ u1(hβ). (3.7)

In order to calculate the convolution (3.7) we need to determine the
function u1(hβ) for all integer values of β. From equality (3.4) we get that
u1(hβ) = F1(hβ) when β = 0, 1, 2, ..., N . Now we need to find representation
of the function u1(hβ) when β < 0 and β > N .

Taking into account that C1[β] = 0 when β < 0 and β > N for u1(hβ)
we get the following

u1(hβ) =

 a−1 , β ≤ 0,
F1(hβ), 0 ≤ β ≤ N,
a+1 , β ≥ N,

(3.8)

and
a−1 = µ1 − λ1, a+1 = µ1 + λ1,

here µ1 = 1
2

N∑
γ=0

C1[γ](hγ) and λ1 are unknowns. If we find unknowns a−1

and a+1 then from the last system of equations we have

µ1 =
1

2
(a+1 + a−1 ), λ1 =

1

2
(a+1 − a

−
1 ). (3.9)

Now from (3.8) for a+1 и a−1 when β = 0 and β = N we get the following

a+1 = F1(1), a−1 = F1(0),

where F1(0) and F1(1) are obtained from (2.7) putting β = 0 and β = N ,
respectively, and g1 is defined by (2.8). This means that we obtained the
explicit form of the function u1(hβ).

Further, using (3.1) and (3.8) from (3.7) calculating the convolution
hD1(hβ) ∗ u1(hβ) for β = 0, N we get

C1[β] = hD1(hβ) ∗ u1(hβ) = h

∞∑
γ=−∞

D1(hβ − hγ)u1(hγ)

= h

[
N∑
γ=0

D1(hβ − hγ)F1(hγ) +

∞∑
γ=1

D1(hβ + hγ)a−1

+

∞∑
γ=1

D1(h(N + γ)− hβ)a+1

]
. (3.10)
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From (3.10) for β = 0 we get

C1[0] =
1

h

[
F1(1)− F1(0)

]
, (3.11)

for β = 1, ..., N − 1 we have

C1[β] =
1

h

[
F1(h(β − 1))− 2F1(hβ) + F1(h(β + 1))

]
, (3.12)

and for β = N we obtain

C1[N ] =
1

h

[
F1(1− h)− F1(1)

]
. (3.13)

Using equalities (2.7) and (2.8) from (3.11), (3.12) and (3.13), after some
simplifications, we get explicit formulas for coefficients C1[β], β = 0, 1, ..., N ,
which are given in the statement of Theorem 3.5. Theorem 3.5 is proved.

Now using Theorems 3.4 and 3.5, we get the following result for the
coefficients of the quadrature formula (2.9), i.e. we get the solution of the
system (2.10)-(2.11).

Theorem 3.6. In the space L
(3)
2 (0, 1) when β = 0, 1, 2, ..., N , the

coefficients of the optimal quadrature formulas of the form (2.9) have the
form C2[β] = 0, where the optimal coefficients C0[β] and C1[β] are defined
by Theorems 3.4 and 3.5, respectively.

Finally, using Theorems 3.4, 3.5 and 3.6 we arrive to the following result.

Theorem 3.7. In the space L
(4)
2 (0, 1) when β = 0, 1, 2, ..., N , the

coefficients of the optimal quadrature formulas of the form (2.12) have the
form

C3[0] = h4

720 ,

C3[β] = 0

C3[N ] = − h4

720 ,

where the optimal coefficients C0[β], C1[β] and C2[β] are defined by
Theorems 3.4, 3.5 and 3.6, respectively.

Theorem 3.6 and 3.7 are proved similarly as Theorem 3.5.
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